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This is the final report for the AFOSR grant #890010 which was granted

for a period of two years starting on November 1988 and expiring on
December 1993. It contributed to the publication of 54 ! articles of which 11

are archival and referred journals.

1. Accomplishments

The main accomplishments of the project are summarized as follows:

- Presenting and demonstrating the new concept of exploratory

schedules. ([3,9,10,20,21,22,23,24,28,36,37,42]).

- Demostrating that even the preliminary version of Hierarchical

Neural Network (HNN) has benefits not available to presently
employed conventional methods. ([3,15,24,291).

- A new theorem states constructive conditions for stable learning in

dosed loop. ([3,15,24]).

- Guaranteed stability in closed loop of HNN for a class of nonlinear

systems linear in control [14,30].

- Application of the approach to several decision making problems:

Robotics, Pattern Recognition, and Control. ([3,4,5,6,7,8,11,13,16,17,18,
19,23,25,26,27,28,32,33,35,41])

- A new cost function is postulated and an algorithm that employs this

cost function is proposed for the learning of parameters [53].
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2. Summary

The objectives of the project were to design and evaluate a hierarchical
neural network (MNN) capable of real time learning and decision making in

dosed loop.

In the initial stages of the project the problem was defined and the
relating state of the art methods were surveyed. Later control of a robotic
system was used as the prototypical task and a HNN was designed and
compared with the state of the art adaptive control techniques.

During this project the concept of exploratory schedules (ES) was
developed [3,9,10,20,21,22,23,24,28,36,37,42]. ES is defined as system trajectories
internally generated by the HNN for the purpose of efficient learning. This
concept was implemented in an open-loop fashion for the control of robotic
manipulators. A theorem was proved that gives constructive conditions for
stable learing in closed loop [3,15,24,29]. This technique yielded improved
transients in tracking desired trajectories in comparison with adaptive control
methods. HNN architecture was applied as a controller for a class of
nonlinear systems linear in control. It was shown to have guaranteed
asymptotic stability [14,30]. HNN architecture was employed with partial
success in areas of pattern recognition and control
[4,5,6,7,8,11,13,18,19,25,26,27,32,33,35,41].

The newly proposed learning controller is shown in Figure 1. This
learning controller consists of a standard adaptive controller and a learning
loop that constitutes an additional block that updates the controller
parameters from time to time [53].

The learning control algorithm consist of updating the parameter
estimates as used in the controller. These parameters are selected from among
a number of simulations runing in parallel. Each simulation is a model of the
plant with different parameters. There are a total of (N+1) simulations, one
simulation is the nominal simulation consisting of nominal parameters and
the remaining N simulations consist of parameters in some neighborhood of

3
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Figure 1: The learning control scheme

the nominal simulation. The scheme of selection of the parameters is
facilated by using the costs, Ci, associated with each simulation. These costs
are given by

t
Ci=JI I q-iq I 2 dt iE {O, 1, 2, ...,N)

where iq = the state of the ith simulator.

3. Work in Progress

Currently we are engaged in finding the utility of the proposed cost function
for a single degrees of freedom (DOF) manipulator and later for the general
case. This entails in comparing the results obtained while minimizing the
proposed cost function with the other learning type algorithms, such as based
upon learning of iterative tasks [Kawamura-85], variable structure techniques,
adaptive control methods, etc. For the purpose of such a comparison we are
developing a software that will simulate these various methods in a user
friendly environment.
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4. Annual Technical Report submitted to AFOSR, November

1991.

Designing the Architecture of a Hierarchical Neural Network to Model
Attention. Learning and Goal Oriented Behavior

I.

This is a progress report for the AFOSR Grant # 890010 describing the

research efforts undertaken during November 1990 through November 1991.
During this period this grant partially supported 6 researchers, and resulted in

over 21 publications. This unusually large activity is largely due to the
enthusiasm of the researchers and their institution, Drexel University, which

indirectly carried some of the financial burden.

Neural or other learning architecture for real world, real

time applications, necessarily employ feedback and thus deal with

the unavoidable dilemma of identification versus stabilization or
tracking. The major finding reported below focuses on this

tradeoff and how to optimally perform it. For linear time
invariant finite dimensional systems we are able to perform on-

line closed loop identification and tracking. If in addition the

learning and tracking cost functions are quadratic, we show that

these costs may be linearly scalarized without loss of optimality.

II. O.becives

The original objectives of the project were to design and evaluate a

hierarchical neural network (HNN) capable of real time learning and

decision making in closed loop, as described in the block diagram of figure 2.
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BLOCK DIAGRAM

User/Higher Level Interface

HNActuators Goals

for
adaptive decision making
and
control

figure 2

The block diagram consists of:

0 A process and goals which act on and are acted upon by the
environment. The process, attainable goals, and environment are
generally nonlinear, time varying and unknown or incompletely
known.
0 An interface to the User or another high level planner which
specifies a set of tasks which are to be accomplished or goals which are
to be met.
* A suitable set of sensors for determining the relevant states of
the process and environment to carry out the request from the higher
level planner.
* The HNN which provides the necessary adaptive decision
making to carry out the task through assessment of the process and
environment.
* A set of actuators which act on the process under the direction of
the HNN.
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III. Accomplishments

The projects' accomplishments are described as follows. The numbers

of the sections of the desiderata as given in the report for the renewal of the

grant are referenced in parentheses at the end of the subheadings.

A) Improved Design of Exploratory Schedules (A2)

Revisit Multiobjective Optimization for Functionals

In the optimization problem one is required to accomplish a

number of tasks in some satisfactory manner. Furthermore, the tasks

are usually conflicting, i.e. if we gain, in the sense of optimizing, for

one task then we loose something for the other. In the case of aircraft

design the tasks might be to improve the maneuverability and to

achieve structural integrity at the same time. Another set of required

tasks can be to minimize the drag while requiring to have the

maximum capacity for the fuel tanks. Similarly, for the design of a

missile, the different goals could be to achieve maximum distance

with minimum fuel and shortest possible time.

As a usual practice the different cost functionals defined for each

task are combined together via summation and the resulting coalesced

scalar functional is optimized via standard optimization techniques.

Such a coagulation results in a lump sum description of the achieved

measure for the different criteria without any indication to the extent

of relative quality achieved for each criteria.

However, we will be interested in such multiobjective optimization

(MOOP) that will consider optimization of each individual criteria

(Zadeh-63] in some sense of noninferiority called Pareto optimality. By

Pareto optimality, in minimizing a number of functionals, a decrease

in any one functional must lead to increase in some other functional.

This therefore yields a range of arguments that give rise to the

noninferior optimum set.
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Therefore, the purpose of multiobjective optimization is to clearly
identify the tradeoff achieved at the expense of the other criteria. This
not only helps better understand the achieved tradeoff but also helps in
the design of controllers by being able to operate within such a non-
inferior optima. This is the crux of the multiobjective optimization

problem.

Pareto optimal control problem is mostly solved via scalarization in
order to obtain a single optimum. Among these approaches are Utility
functions Method [Stadler -88], Utopian Point Method [Koussoulas-86],

Sequential optimization [Stadler -88], Goal programming [Stadler -88],
Min-max. Some other approaches are Simultaneous Model-Matching
Method [Khargonekar-91], Method of Proper Equality Constraints [Lin-
76], General Theory for Optimal Processes [Chang-66].

Closed Loop Identification via augmented state-parameter vector

In the existing identification algorithms the input and output of
the plant are used to derived the parameters of the linear plant. The
issue of state estimation is not considered as part of the identification I
estimation process. These are the Least Square (LS) algorithms. The LS
algorithms perform well in open loop. However, in closed loop their
application have inherent problems as the feedback destroys the
persistently exciting property of the input to the plant even if the input
to the loop is persistently exciting.

The new approach is based on the observation that for control
the plant's parameters as well as the states of the plant are required.
Moreover, the new representation of linear time invariant systems
presents the plant in such a form that the parameters appear linearly,
thus enabling direct application of the well known observability theory.
This is a generalization of the observability concept to identification of
the plant's parameters. This simplicity comes at the expense that the
new representation is time varying even if the original plant is time
invariant. However, this is only a computational problem since the
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theory of observers for linear time-variant systems is well established.
This approach requires less demanding conditions on the input to

guarantee convergence of the estimates. In steady state it is sufficient
for the input to be a sum of n distinct exponentials which is half of the
quantity required in the common existing LS algorithms. Moreover,
these conditions apply to estimation in open and closed loop without
any further restrictions.

The final objective is to control the plant in closed loop.

However, there is an inherent conflict between the control and the
identification as they are competing for the only available resource,
namely the input to the plant.

The Multiple Objective Optimization Theory is the framework

that enables to formulate and to resolve these conflicting objectives.
Namely, how to guarantee on one hand that the input to the plant will
be sufficient for on-line identification and on the other hand that the
tracking error will be small. This is dearly a subset of the learning
versus tracking problem. Moreover, the concept of input that
guarantees identification is a subset of the concept of exploratory
schedule. It must be emphasized that the MOOP approach can not be
satisfied with the existing LS identification algorithms as they fail to
identify in closed loop. The new representation does not have this

deficiency and enables to identify on line the plant while controling the

plant in closed loop.

B) Hardware and Neural Network Review (B)

Many products are available in a variety of different forms.

1. Software simulators
These are the most common and least expensive

neurocomputing products.
a) BrainMaker 2.1 by California Scientific Software

(CSS).
b) NeuroShell 4.0 by Ward Systems Group
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c) AutoNet by Peak Software.

d) ANSim by SAIC.
e) NeuralWorks Professional II Plus by NeuralWare.
f) ExploreNet 3000 by HNC.

g) PLEX! by Lucid, Inc.

h) Braincel by Promised Land Technologies, Inc.

i) NNetSheet by Inductive Solutions, Inc.
j) Neuralyst 1.2
k) NDS 1000 by Nestor, Inc.
1) NeuroSym NeuroComputing Library in C.
m) OWL Neural Network Library by Olmsted &

Watkins in C.

2. Accelerator Boards

a) BrainMaker C25 Accelerator Board.
b) NeuroBoard by Ward Systems Group's

c) Delta II Floating Point Processor by SAIC.
d) ANZA Plus Accelerator Board by HNC.

3. Integrated Circuits

a) Syntonic Systems Dendros-I.

b) Micro Devices MD1220.
c) Neural Semiconductors SU3232 and NU32.

d) Intel i80170.
e) Bell Laboratories IC.

f) Lockheed PNNP.

C) Application of Neural Network to Adaptive Control.

Necessary and Sufficient Conditions on the Observability and

Identifiability of Linear Systems [50]
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A new representation of linear time-invariant systems is
presented. This representation enables to generate necessary and
sufficient conditions on the simultaneous state observability and
parameters identifiability of linear time-invariant systems. Sufficient
conditions derived from the necessary and sufficient conditions are
weaker than the well known persistent excitation conditions in the
existing least square schemes. Namely, a sum of n distinct exponentials
in the input to the system is sufficient. This is half of the quantity
required in the common existing least square algorithms. These
conditions apply to estimation in open and closed closed loop without
further restrictions. Simulation results demonstrate the performance
of estimation with this new approach.

Multiple Objective Optimization Approach to Adaptive and Learning
Control [451

This paper formulates a new approach to the classical

learning/adaptive control problem. Our approach is based on two key
observations: 1) the inherent conflict between control and
identification as they are competing for the only available resource,
namely the input to the plant; 2) when designing and optimizing the
performance of a control system the current task as well as the
repertoire of other typical future tasks which the system may encounter
during its life time should be considered. Our approach is formulated
for a general nonlinear time varying plant, thus, unlike existing
adaptive control theory, the theory for linear time invariant system
evolves as a special case of the general case. The design for the full life
time of the system creates a methodology that specifies what current
actions should be taken in addition to the tracking of the current
reference trajectory, at the expense of some performance degradation in
the current task, so as to improve the performance of future tasks, that
is the learning tradeoff. The conflicting objectives, namely, tracking vs.
learning and current task vs. future tasks, is most naturally posed and
partially solved in the domain of Multiple Objective Optimization
Theory. We demonstrate for linear time invariant plants with
quadratic cost, that Pareto optimal learning adaptive controllers may be
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obtained by simple "out of loop" mixing, where a scalar controls the
tracking vs. learning tradeoff in a reliable way.

On-Line Identification and Control of Linearized Aircraft Dynamics [46]

Standard Methods for on-line parameter identification generally

require strong persistent excitation to achieve accurate results rapidly
enough to be used in a closed loop control systems. Obviously, for
manned aircraft, flying qualities can be significantly degraded if there is
such a strong excitation present. Even with this excitation,
identification may not be reliable for the closed loop flight control
system since an effect of feedback is to damp out the disturbances that
excite the system.

This paper examines a new approach for performing on-line
identification and control that require substantially weaker excitation
and will work even with closed loop systems. One key element of the
approach used in this paper is a new representation of linear time-
invariant systems that generalizes the observability concept to
parameter identification and enables on-line identification in closed
loop. This approach also uses separation theorems for nonlinear time
varying systems that specify the exact conditions on the use of the
certainty equivalence principle. A final key feature is the use of
Multiple Optimization Theory to resolve the conflict between
identification and controller performance as they compete for the only
available resource, the inputs to the aircraft. Multiple Objective
Optimization also allows the flight controller to utilize information
available from future integrated systems, such as the Pave Pillar
Architecture, to adjust the trade-off between identification and control
to suit the current pilot task in a particular tactical/strategic situation.

In addition, the excitation sufficient for simultaneous
parameters identification and state observation is half of that required
with most existing Least Square algorithms.

12



In this paper, the approach is applied to a longitudinal model of
a representative linearized high performance aircraft model.
Simulation results compare the final controller with a conventional
classical gain scheduled flight controller.

On Generation of Exploratory Schedules In Closed Loop for Enhanced
Machine Learning [37]

Exploratory schedules (ES) are reference input trajectories designed to
enhance the learning of system parameters. Such trajectories in general
may not be the desired trajectories, resulting in larger tracking errors.
However, ES offer faster convergence to the system parameters and
therefore yield smaller long term tracking errors. The automation for
the design of ES requires on-line modification of the desired trajectory
to enhance learning at the expense of poorer initial tracking. We
discuss this closed loop mode of generation of ES, and give an example
of the benefits achieved by the utilization of ES in the context of
controller design.

A New Approach to Learning Control via MultioJective Optimization
[31]

The material presented here is an extension, to the previous
work where estimation of the parameters of a plant was incorporated
through Exploratory Schedules (ES) which are reference input
trajectories designed to enhance the learning of system parameters. In
the previous work ES were generated off-line and used in an open loop
fashion. Moreover, these ES were used between actual control tasks
therefore limiting the process of estimation during idle time. Here we
present the approach to generate ES in a closed loop manner. Such
trajectories in general may not be the desired trajectories, resulting in
larger tracking errors. However, ES offer faster convergence to the
system parameters and therefore yield smaller long term tracking
errors. The automation for the design of ES requires on-line
modification of the desired trajectory to enhance learning at the
expense of poorer initial tracking.
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Custom Neurocontroller for a Time Delay Process [43]

We propose a new neurocontrol architecture for time delay

processes. The controller is based on a variable dimension adaptive

model which is identified on-line, in dosed loop. A nonlinear
maximization procedure guarantees the minimal order of the

employed model. A variety of control laws may be utilized in this new

architecture. Simulations demonstrate the efficiency of the proposed

controller.

Target Classification Using Radar Data: A Comparative Study [52]

This paper compares three different approaches when used

against a problem of present and practical interest: the classification of

radar return data from two classes of aircraft. The three approaches are:

the typical feature extraction approach used for target classification

when dealing with radar data; a multi layer perceptron neural network

approach and; a branched multi layer perceptron neural network

approach. The comparison was performed under equal conditions.

The classification rate was used as the measure of effectiveness of the

approach. The feature extraction approach provided a classification rate

of 72.5%. The multi layer perceptron consisted of a one hidden layer

network and the best classification rate it has provided is 85.1%. The

branched multi layer perceptron consisted of two separate multi layer

perceptron neural networks trained to recognize only one class of

targets and the best classification rate it has provided is 54.9%.

D) Neurocontrol Test-Bed Design and Construction

A test-bed was constructed for the purpose of developing and

testing Neurocontrol algorithms via control of a helicopter in flight.

Conceptual and block diagrams of the flight control test bed in its

14



present form are shown in figures 2 and 3. The test-bed consists of an
electric powered radio control helicopter manufactured by the Kalt
company which is mounted on a 6 DOF (degrees of freedom) flight
stand. Sensing of the helicopters position and orientation is
accomplished through six 5kfl potentiometers which have been
mounted at the joints of the flight stand. Currently four of the six joint
position sensors are operational. Power is supplied to the helicopter's
main motor, radio receiver and control servos via an umbilical to an

external power supply. Flight control algorithm development is
performed on an ALR 486 based computer. National Instruments
LabWindows with 'C' is used as the program development
environment. The helicopter's position as sensed by the
potentiometers is transmitted via communication cable as a vector of
varying voltages to a National Instruments NBMIO16 data acquisition

board. The NBMIO16 provides the analog to digital convw- 1 on for the
position sensing signals. The Airtronics VG6H radio transutitter that
was provided with the helicopter was retained and a selection switch

installed which allows control of the helicopter either manually via a
test pilot or automatically through the flight control computer. The
NBMIO16 performs the digital to analog conversion of the control
signals to the transmitter. Subsystems of the flight control test-bed are

currently being tested.

IV. Plan of Work for the 2nd Year

A) State of the Art in Finding the Pareto Set for MOOP

In the classical optimal control problem, different functionals are

combined via summation to form a scalar functional and then that
functional is optimized. Such a combination was only intuitive, and

not based on sound mathematical analysis. The theory of
multiobjective optimization with the specifics of Pareto optimality
gives us the conditions under which we can achieve such a

scalarization.
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Usually when coupled costs are optimized there exists a region

of tradeoff wherein one cost may be improved at the expense of others.
Such a tradeoff is apparent in the problem of estimation verses control.
At times the requirements for control may not be stringent and
therefore, the cost related to estimation may be further decreased at the
expense of the cost related to control in order to better the estimates,

and vice versa. Therefore, the question that remains to be answered is

how to achieve this tradeoff while remaining in the Pareto optimal
region.

State of the art in multiobjective optimization deals with either

obtaining a single noninferior point of operation or else concerns the
generation of all the noninferior points. In the former case the tradeoff
is explicit and fixed depending upon the type of multiple optimization
procedure used to obtain the solution. The later case generates the

whole Pareto set but since it is achieved via exhaustive search it is time
consuming, and therefore not practical in a real time application.

B) Understand the Relations of MOOP to the On-line
Tradeoff Between Identification and Tracking

In adaptive control the adaptation of parameters is achieved

through laws based upon search in the gradient directions of the

tracking error signal. These rules adapt the parameters such that the

tracking of the desired trajectory is improved following an initial
(possibly large) error transient. However the system parameters

may not be adapted to their true values. Therefore, tracking is
acomplished at the expense of identification. However, by using
MOOP a tradeoff may be designed. This tradeoff is achieved via
specification of functionals, one for the purpose of identification and

the other for control. We expect that investigating the parameter
adaptation properties as an effect of these functionals will lead to a

better understanding of the adaptation process and therefore
development of improved parameter adaptation laws.
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C) Attempt to Solve the Landing Problem of a Helicopter
as Suggested by Boeing

As part of our research into the state of the art in helicopter

control systems, a meeting was arranged with a representative of
Boeing Helicopter Co. The problem of automatically landing a

helicopter onto a ship in rough seas was presented to us as one that is
significant. Future efforts on this project are likely to be directed

towards solving this problem. Conceptual and block diagrams of the
proposed test-bed for investigation of the Rough Sea Landing Problem

are shown in figures 4 and 5. The present helicopter flight control test

bed will be augmented with 1) a robot manipulator and controller, and

2) additional sensing and computing resources. The robot manipulator

is to be used to imitate the motion of a ship's landing platform. The

type and quantity of additional sensors is currently being assessed.

V. Supported Researchers

Allon Guez, Ishak Bar-Kana, Ilan Rusnak, Ziauddin Ahmad, John

Selinsky, Vadim Rokhlenko.
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